
CMC Coin Smart Contract
Audit Report - November 2021

Submitted By

Antier Solutions

1

Contents

Disclaimer 3

Scope 5

Audit Goals 5

Recommendations 6

Contracts Function Description 6

Severity Level References 8

Functional Test Status 23

Technical Analysis 24

Automation Report 25

Limitations on Disclosure and Use of this Report 33

2

Disclaimer

This is a limited audit report based on our analysis of the CMC Coin Smart Contract. It covers
industry best practices as of the date of this report, concerning: smart contract best coding
practices, cybersecurity vulnerabilities, issues in the framework and algorithms based on white
paper, code, the details of which are set out in this report, (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended functions).

Smart contracts are deployed and executed on the blockchain. The platform, its programming
language, and other software related to the smart contract can have vulnerabilities that can lead
to hacks.

You are advised to read the full report to get a full view of our analysis. While we did our best
in producing this report, it is important to note that you should not rely on this report, and
cannot claim against us, based on what it says or does not say, or how we produced it, and you
need to conduct your independent investigations before making any decisions. We go into more
detail on this in the disclaimer below – please make sure to read it in full.

By reading this report or any part of it, you agree to the terms of this disclaimer. If you do not
agree to the terms, then please immediately cease reading this report, and delete and destroy all
copies of this report downloaded and/or printed by you.

The report is provided "as is,” without any condition, warranty, or other terms of any kind
except as set out in this disclaimer. TAS hereby excludes all representations, warranties,
conditions, and other terms (including, without limitation, the warranties implied by law of
satisfactory quality, fitness for purpose, and the use of reasonable care and skill) which, but for
this clause, might affect the report.

3

Executive Summary
CMC Coin commissioned Antier Solutions to perform an end-to-end source code review of
their Solidity Smart Contract. Team Antier Solutions (referred to as TAS throughout the report)
performed the audit from 3rd to 17th November 2021.

The following report discusses severity issues and their scope of rectification through change
recommendations. It also highlights activities that are successfully executed and others that
need total reworking (if any).

The report emphasizes best practices in coding and the security vulnerabilities if any.

The information in this report should be used to understand the overall code quality, security,
and correctness of the Smart Contract. The analysis is static and entirely limited to the Smart
Contract code.

In the audit, we reviewed the Smart Contract’s code that implements the token mechanism.

4

Scope
We performed an independent technical audit to identify Smart Contract uncertainties. This
shall protect the code from illegitimate authorization attempts or external & internal threats of
any type. This also ensures end-to-end proofing of the contract from frauds.

The audit was performed semi-manually. We analysed the Smart Contract code line-by-line and
used an automation tool to report any suspicious code.

We considered the following standards for the Smart Contract code review:

● ERC20 [Token Contract best practices]
● Router02 (Uniswap) [Token swapping contract best practices]
● Dividend-Paying Token Contract Standards.

We used the following tools to perform automated tests:
● Manual Testing tool :

Hardhat
● Framework :

Remix Ethereum
● Automation tools:

○ Slither
○ Surya
○ Mythril

Audit Goals
The focus of the audit was to verify that the Smart Contract system was secure, resilient, and
worked according to the specifications provided to the Auditing team.

TAS grouped the audit activities in the following three categories:

● Security
Identifying security-related issues within each contract and the system of contracts

● Architecture
Evaluation of the system architecture against smart contract conventions and general
software best practices

● Code Correctness and Quality
A full review of the contract source code. The primary areas of focus include:

○ Correctness
○ Readability
○ Sections of code with high complexity
○ Quantity and quality of test coverage

● Functional Testing
Type of software testing that validates the software system against the functional
requirements/specifications.

5

Recommendations
The CMC Coin development team demonstrated high technical capabilities, both in the design
of the architecture and implementation of the Smart Contract. Overall, the code includes
effective use of abstraction, separation of concerns, and modularity.

Compiler versions

CMC Coin should use the latest compiler version. Here, the compiler version is 0.6.2

Code security

TAS performed a static analysis of the code to identify possible loopholes. This verified
whether the contract adhered to the Solidity best practices.

Implementation instructions

Include Unit Test cases for better understanding and testing of Gas limits. All the
implementation instructions should be written in the README file.

Contracts Function Description

Contract Name Functions Visibility Mutability Modifiers

CryptoMarketingCompany <Constructor>
<Receive Ether>
updateWeeklyDividendTracker
updateMontlyDividendTracker
updateUniswapV2Router
excludeFromFees
excludeMultipleAccountsFromFees
setMarketingWallet
switchRewardTokenAddress
setRewardTokenWeeklyRewardsFees
setRewardTokenMonthlyRewardsFees
setLiquidityFees
setMarketingFees
setAutomatedMarketMakerPair
blacklistAddress
_setAutomatedMarketMakerPair
updateGasForProcessing
updateWeeklyClaimWait
updateMonthlyClaimWait
getWeeklyClaimWait
getMonthlyClaimWait
getWeeklyTotalDividendsDistributed
getMonthlyTotalDividendsDistributed
isExcludedFromFees
withdrawableDividendsOf
dividendTokenBalancesOf
excludeFromDividends
getWeeklyAccountDividendsInfo

Public
External
Public
Public
Public
Public
Public

External
External
External
External
External
External
Public

External
Private
Public

External
External
External
External
External
External
Public
Public
Public

External
External

modifies state
payable

modifies state
modifies state
modifies state
modifies state
modifies state
modifies state
modifies state
modifies state
modifies state
modifies state
modifies state
modifies state
modifies state
modifies state
modifies state
modifies state
modifies state
modifies state

modifies state

ERC20

onlyOwner
onlyOwner
onlyOwner
onlyOwner
onlyOwner
onlyOwner
onlyOwner
onlyOwner
onlyOwner
onlyOwner
onlyOwner
onlyOwner

onlyOwner
onlyOwner

onlyOwner

6

getMonthlyAccountDividendsInfo
getWeeklyAccountDividendsInfoAtIndex
getMontlyAccountDividendsInfoAtIndex
processDividendTrackers
claim
getLastProcessedIndex
getNumberOfWeeklyDividendTokenHolders
getNumberOfMonthlyDividendTokenHolders
getTransferAmounts
_transfer
swapAndSendToFee
swapAndLiquify
swapTokensForEth
swapTokensForRewardToken
addLiquidity
swapAndSendDividends

External
External
External
External
External
External
External
External
Private
Internal
Private
Private
Private
Private
Private
Private

modifies state
modifies state

modifies state
modifies state
modifies state
modifies state

modifies state
modifies state
modifies state

CMCDividendTracker <Constructor>
DividendPayingToken
_transfer | |
withdrawDividend
excludeFromDividends
updateClaimWait
getLastProcessedIndex
getNumberOfTokenHolders
getAccount
getAccountAtIndex
canAutoClaim
setBalance
process
processAccount

Public

Internal
Public

External
External
External
External
Public
Public
Private

External
Public
Public

modifies state

modifies state
modifies state

modifies state

modifies state

onlyOwner
onlyOwner

onlyOwner

onlyOwner

DividendPayingToken <Constructor>
distributeRewardTokenDividends
withdrawDividend
_withdrawDividendOfUser
dividendOf
withdrawableDividendOf
withdrawnDividendOf
accumulativeDividendOf
_transfer
_mint
_burn
_setBalance
switchRewardTokenAddress

Public
Public
Public

Internal
Public
Public
Public
Public

Internal
Internal
Internal
Internal
External

modifies state
modifies state
modifies state
modifies state

modifies state
modifies state
modifies state
modifies state
modifies state

ERC20
onlyOwner

7

Severity Level References

The following severity levels will describe the degree of every issue:

High severity issues

The issue puts the majority of, or large numbers of, users’ sensitive information at risk, or are
reasonably likely to lead to a catastrophic impact on the client’s reputation or serious financial
implications for the client and users.

Medium severity issues

The issue puts a subset of individual users’ sensitive information at risk; exploitation would be
detrimental to the client’s reputation or is reasonably likely to lead to moderate financial impact.

Low severity issues

The risk is relatively low and could not be exploited regularly, or it’s a risk not indicated as
important or impactful by the client because of the client’s business circumstances.

Informational

The issue does not pose an immediate threat to continued operation or usage but is relevant for
security best practices, software engineering best practices, or defensive redundancy.

Optimization issue

The issue does not pose an immediate threat to continued operation or usage but is relevant for
code optimization and gas efficiency best practices.

Number of vulnerabilities per severity

High Medium Low Informational

0 7 1 9

8

Medium Severity Vulnerabilities

Severity Medium

Contract CryptoMarketingCompany.sol

Description
There are multiple scenarios where transfer of tokens failed

● When the contract's CMC token balance reaches a
threshold amount for swapping and liquifying, it failed.

● Marketing, weekly dividend and monthly dividend values
aren’t updated after they are distributed to the respective
addresses.

Code Snippet

Recommendation
Subtract the transferred token amounts from monthly, weekly,
marketing tokens after the transfer.

Status Fixed

Severity Medium

Contract CryptoMarketingCompany.sol

Description
Unchecked transfer.

The return value of an external transfer/transferFrom call is not
checked

9

Code Snippet

Recommendation Use SafeERC20, or ensure that the transfer/transferFrom return value
is checked.

Status Fixed(Function removed)

Severity Medium

Contract CryptoMarketingCompany.sol

Description Lack of balance check.

Function

Recommendation Include a require statement to check the balance.

Status Fixed

10

Severity Medium

Contract CryptoMarketingCompany.sol

Description Inefficient usage of conditional statements.

Function

Recommendation The statement if(ethAmount-ethFromLiquidity>0) will fail if
ethFromLiquidity is greater than ethAmount.

Usage of if(ethAmount>ethFromLiquidity) can be more
efficient and reduces operations.

Status Fixed

11

Severity Medium

Contract CryptoMarketingCompany.sol

Description Functions with the same functionality.

Function

Recommendation These functions can be merged into a single function by passing
an additional argument of dividendTrackerType. This will save
gas used for deployment.

12

Status Fixed

Severity Medium

Contract CryptoMarketingCompany.sol

Description Lack of update in token balance.

Function

Recommendation Once the "tokens" are transferred, they should be deducted
from the marketing tokens to update their value. Otherwise the
tokens will keep on accumulating.

Status Fixed

13

Severity Medium

Contract CryptoMarketingCompany.sol

Description Usage of same events

Function

Recommendation Specify tracker type in the events.

Status Fixed

14

Low Severity Vulnerabilities

Severity Low

Contract CryptoMarketingCompany.sol

Description Lack of zero-check

Code Snippet

Recommendation Constructor should have a method to check owner address given
is not a zero address

Status Fixed

15

Informational Severity Vulnerabilities

Severity Informational

Contract CryptoMarketingCompany.sol

Description Dead-code: Functions that are not used.

Function

Recommendation Remove unused functions.

Status Fixed

16

Severity Informational

Contract CryptoMarketingCompany.sol

Description Conformance to Solidity naming conventions

Recommendation
Follow the Solidity naming convention.

Solidity defines a naming convention that should be followed.

Rule exceptions

● Allow constant variable name/symbol/decimals to be
lowercase (ERC20).

● Allow _ at the beginning of the mixed_case match for private
variables and unused parameters.

Status Acknowledged

17

https://solidity.readthedocs.io/en/v0.4.25/style-guide.html#naming-conventions

Severity Informational

Contract Context.sol

Description Redundant Statements

Detect the usage of redundant statements that have no
effect.

Function

Recommendation Remove redundant statements if they congest code but offer no
value.

Status Acknowledged

18

Severity Informational

Contract DividendPayingToken.sol

Description Prevent variables from having similar names.

Function

Recommendation
Description

Variable names too similar.

Detect variables with names that are too similar.

Status Acknowledged

19

Severity Informational

Contract SafeMathInt.sol

Description Unused state variable

Function

Recommendation Remove unused state variables.

Status Acknowledged

20

Severity Informational

Contract CryptoMarketingCompany.sol

Description Public function that could be declared external.

public functions that are never called by the contract should
be declared external to save gas.

Function

Recommendation Use the external attribute for functions never called from the
contract.

Status Fixed

21

Severity Informational

Contract CryptoMarketingCompany.sol

Description Function name spelled wrongly.

Function

Recommendation Ensure the names are spelled right in order to ease
implementation.

Status Fixed(Function merged)

Severity Informational

Contract CryptoMarketingCompany.sol

Description Usage of longer string messages.

Function

Recommendation Usage of longer string messages can result in more usage of
gas.

22

Status Fixed

Severity Informational

Contract CryptoMarketingCompany.sol

Description Private variables that could be declared public.

Function

Recommendation These variables are private in the contract but they should be
public because the getter function gets automatically generated
for a public variable.

Status Fixed

23

Functional Test Status
CryptoMarketingCompany

Function Testing Result Status

Constructor(deploy) Passed Passed

updateWeeklyDividendTracker Passed Passed

updateMontlyDividendTracker Passed Passed

updateUniswapV2Router Passed Passed

excludeFromFees Passed Passed

excludeMultipleAccountsFromFees Passed Passed

setMarketingWallet Passed Passed

switchRewardTokenAddress Passed Passed

setRewardTokenWeeklyRewardsFees Passed Passed

setRewardTokenMonthlyRewardsFees Passed Passed

setLiquidityFees Passed Passed

setMarketingFees Passed Passed

setAutomatedMarketMakerPair Passed Passed

blacklistAddress Passed Passed

updateGasForProcessing Passed Passed

updateWeeklyClaimWait Passed Passed

updateMonthlyClaimWait Passed Passed

excludeFromDividends Passed Passed

processDividendTrackers Passed Passed

claim Passed Passed

Transfer Failed Fixed

24

Technical Analysis
The following is our automated and manual analysis of the CMC Coin Smart Contract code:

Checked Vulnerabilities

We checked CMC Coin Smart Contract for commonly known and specific business logic
vulnerabilities. Following is the list of vulnerabilities tested in the Smart Contract code:

● Reentrancy
● Timestamp Dependence
● Gas limit and loops
● DoS with (unexpected) throw
● DoS with (unexpected) revert
● DoS with block gas limit
● Transaction-ordering dependence
● Use of tx.origin
● Exception disorder
● Gasless send
● Balance equality
● Byte array
● Transfer forwards all gas
● ERC20 API violation
● Malicious libraries
● Compiler version not fixed
● Redundant fall back function
● Send instead of transfer
● Style guide violation
● Unchecked external call
● Unchecked math
● Unused returns
● Unused state variables
● Unused functions
● Unchecked transfer
● Unsafe type inference
● Implicit visibility level
● Address hardcoded
● Using delete for arrays
● Integer overflow/underflow
● Locked money
● Private modifier
● Revert/require functions
● Using var
● Visibility

25

Automation Report

TAS used Slither and Mythril to generate the automation report.

Slither

Slither is a Solidity static analysis framework written in Python 3. It runs a suite of vulnerability
detectors, prints visual information about contract details, and provides an API to write custom
analyses. Slither enables developers to find vulnerabilities, enhance their code comprehension,
and quickly prototype custom analyses.

26

27

28

29

30

31

32

33

Mythril

Mythril is a security analysis tool for EVM bytecode. It detects security vulnerabilities in
smart contracts built for Ethereum, Hedera, Quorum, Vechain, Roostock, Tron, and
other EVM-compatible blockchains. It uses symbolic execution, SMT solving, and taint
analysis to detect a variety of security vulnerabilities.

34

Limitations on Disclosure and Use of this Report

This report contains information concerning potential details of CMC Coin and methods for
exploiting them. Antier Solutions recommends that precautions should be taken to protect the
confidentiality of this document and the information contained herein.

Security Assessment is an uncertain process based on experiences, currently available
information, and known threats. All information security systems, which by their nature are
dependent on human beings, are vulnerable to some degree. Therefore, although Antier
Solutions has identified major security vulnerabilities of the analysed system, there can be no
assurance that any exercise of this nature will identify all possible vulnerabilities or propose
exhaustive and operationally viable recommendations to mitigate those exposures.

As technologies and risks change over time, the vulnerabilities associated with the operation of
the CMC Coin Smart Contract described in this report, as well as the actions necessary to
reduce the exposure to such vulnerabilities will also change. Antier Solutions makes no
undertaking to supplement or update this report based on the changed circumstances or facts of
which Antier Solutions becomes aware after the date hereof.

This report may recommend that Antier Solutions use certain software or hardware products
manufactured or maintained by other vendors. Antier Solutions bases these recommendations
on its prior experience with the capabilities of those products. Nonetheless, Antier Solutions
does not and cannot warrant that a particular product will work as advertised by the vendor, nor
that it will operate in the manner intended.

The Non-Disclosure Agreement (NDA) in effect between Antier Solutions and CMC Coin
Ltd.governs the disclosure of this report to all other parties, including product vendors and
suppliers.

35

